Testbed Evaluation of an Attestation-Capable,
Programmable Software Switch

Alexander Wolosewicz

Nishanth Shyamkumar

Nik Sultana

Illinois Institute of Technology
Chicago, IL, USA

Abstract

This paper describes a testbed evaluation of the first imple-
mentation of an attestation-capable, programmable network
switch. This evaluation was carried out on two testbeds: a
local university testbed, and on the FABRIC testbed.

Through its programmability, the switch supports flexible
network management, since the switch can execute a pro-
gram on each packet that is forwarded by this switch. And
through attestation, this switch protects against bugs in the
program, misconfiguration, and subversion by an adversary
who can control the program on the switch. Attestation pro-
vides an important primitive on which to build more reliable
and secure networked systems. The evaluation of this switch
in a physical testbed checks for correct behavior and mea-
sures the throughput of the switch implementation.

1 Introduction

The P4 language [3] is used to write simple but effective
packet-processors on smart NICs and programmable switches.
Programmability provides flexibility to network management
through the customization of NIC and switch behavior. In
addition to flexibility, however, programmability also car-
ries risks: bugs in the program might undermine the relia-
bility or security of the network, and the privacy of users.

Recently, the use of Remote Attestation (RA) was suggested
to mitigate these risks [4]. An attestation-capable network el-
ement produces evidence about the program that processes
each packet. This allows the operator and users of a pro-
grammable network to check the integrity of the network.

This paper describes the testbed evaluation of the first im-
plementation of an attestation-capable, programmable switch.
Our switch is open-sourced online.! This implementation
extends BMv2—the reference P4 software switch [1]—to gen-
erate evidence of its trustworthiness and to expose that ev-
idence to be remotely appraised. This switch is designed to
preserve integrity of this evidence: it prevents the P4 pro-
gram from manipulating this evidence.

The evaluation of this switch in a physical testbed checks
for correct behavior and measures the throughput of the
switch implementation. This evaluation was carried out on
a local university testbed and on the FABRIC testbed.

Ihttps://github.com/awolosewicz/bmv2-remote-attestation

2 Switch Architecture

The attestation-capable switch modifies the reference P4 soft-
ware switch [1] to generate digests about three pieces of
information: (1) the dataplane registers (which hold persis-
tent state between packets), (2) look-up tables, and (3) the
P4 program. Whenever any of these is updated, a dedicated,
read-only register in the switch is updated with the digest.

The contents of these read-only registers are then embed-
ded into packets that are processed by the switch. Thus each
packet carries evidence of how it was processed.

Fig. 1 shows how the RA data is embedded into packets
that traverse the packet-processing pipeline. The RA data
is generated outside this pipeline—a new checksum is gen-
erated whenever the relevant state is changed. In this pro-
totype, we use a custom hop-by-hop (HBH) IPv6 extension
to carry the evidence. We use HPH because of its flexibility
and the ability of hosts to easily parse the packet even if they
do not recognize the structure. This functionality could be
extended to other protocols with some small adjustments,
such as smaller checksums to fit the IPv4 options field. Crit-
ically, all RA functions take place outside the scope of the
program running on the switch. The P4 program cannot
overwrite these registers; and trying to find suitable hash
collision will be challenging for an adversary.

P4 Program in Control

Packet RA Pre- P4-Controlled RA Post-gg Packet
Parser - Deparser|
Ingress Parse Prc g Deparse ||l Egress
Program
Packet Packet Program manipulates Program Switch Pagket
checked extracts . . h exits
enters packet with rebuilds inserts :
. for RA packet) switch or
switch match-action packet RA data
data headers dropped
tables
IPv6 RA Path Data
w/ RA? ~Yes from packet Yes No
Modify
RAHBH
RA Data from
switch

Add RAHBH

Figure 1: Packet Processing in an Attesting Switch.

https://github.com/awolosewicz/bmv2-remote-attestation

Sending]3 ',FW Kernel User space
Host Rl I N
J]‘_I_E 5 BMv2 (+RA)
Receiving L |
e Switching Host

Figure 2: Testbed setup used to evaluate correctness
and throughput. The Switching Host uses a 2-port
NIC—its ports are labelled “0” and “1” in this figure.

3 Prototype Validation

The initial testing of the prototype focused on ensuring that
the checksums were @ generated when their respective state
elements were updated, @ consistent with unique states,

® readable by the control plane and program, @ correctly in-
serted into transiting packets, that ® any attempts by a P4
program to place false data in the RA header are replaced
with authentic data, and that ® the switch’s insertion of RA
data did not corrupt the underlying payload.

4 Local Testbed Setup and Evaluation

We use a physical testbed setup as shown in Fig. 2. The

attestation-capable BMv2 switch (System Under Test, or SUT)
is programmable and it is configured to execute a simple

router P4 program that handles IPv6 and IPv4 routing of

packets across subnets. The receiver and sender are given

IPv6 addresses on different subnets and are directly con-
nected to the SUT on 2 different ports. The sender’s and

receiver’s routing table and neighbor table are configured

to be consistent with the above setup.

4.1 Evaluation and Workloads

The topology shown in Fig. 2 was used to check for both
correctness and throughput. To check correctness, the traf-
fic workload consists of ICMPv6 echo requests. To check
throughput, the traffic workload consists of UDP packets.

Validation: We tested the aspects as mentioned in Section 3.

Aspects O-® were tested with the control plane CLI and
tracking state change when adding rules to the P4 program
table. Aspects @ and ® were tested by using an ICMPv6
echo request-response challenge from sender to receiver via
the BMv2+RA switch. Aspect ® was tested by running a P4
program that corrupts the attestation. We confirmed that,
on packet exit from the switch, the corrupted hashes are
overwritten with the correct hash values.

Performance: For measuring throughput we rely on iperf3
statistics. The sender generates IPv6/UDP packets of a single
flow and payload size of 1362 bytes. The packets are sent at
bitrates beginning at 100 Mbps and then increased in mul-
tiples of 2 until loss is detected, then gradually decreased

Wolosewicz et al.

until no loss is detected. We then run the experiment at this
bitrate for 10 seconds. In these test cases, we have enabled
NIC hardware offloads, such as Rx/Tx checksums. With of-
floading disabled, throughput reaches 560 Mbps.

For the SUT, we use a tc-ebpf program hooked to a clsact
qdisc on the ingress and egress ports. The tc layer is at the
bottom of the generic network stack and has visibility to all
packets. The test is run 8 times.

We measure the performance difference between BMv2+RA
and base BMv2 when sending IPv6 UDP packets, as the RA
switch is actively involved in creating/modifying a HBH ex-
tension header for these payloads.

We observe no drop in performance for zero-packet loss
from our test runs, even when the attestation evidence is em-
bedded into each packet that exits the switch. Both switches
perform at 270 Mbps when offloading is enabled. There is,
however, a bandwidth overhead since the HBH extensions
add another 104 bytes to the packet length. So in our test
case, the overhead is 104/1362 i.e, 7.6% per IPv6 packet.

5 FABRIC Testbed Setup and Evaluation

The setup on FABRIC was similar to that described in Sec-
tion 4 for the local testbed. On FABRIC we allocated three
nodes—one each for the sending host, receiving host, and
SUT. These nodes were configured to have IPv6 addresses,
consistent with the configuration used in the local testbed.

5.1 Evaluation and Workloads

The workloads used on FABRIC were similar to those used
in the local testbed (§4.1). The only difference is that the
sender and receiver are now Ubuntu VMs that are connected
to the VM that runs the switch, through L2 Site-to-Site links,
which is an abstraction provided by FABRIC. The sender and
receiver VMs have 2 cores for computation, and the switch
VM is assigned 8 cores. We successfully tested the validity
aspects as mentioned in §3. For performance, we relied en-
tirely on iperf3 (version 3.7) for throughput measurements.
We sent UDP packets of size 1362 bytes each, for a dura-
tion of 10 seconds between the two hosts via the RA switch.
We measured 300Mbps throughput with no packet loss, af-
ter disabling all network card offloads, as recommended in
a FABRIC reference lab notebook [2]. We are continuing to
work on performance tuning on the FABRIC testbed.

Acknowledgements. We thank Mohammad Firas Sada and Sean
Cummings for their help with the initial testbed setup. We thank
Hyunsuk Bang for feedback on the switch design. This material
is based upon work supported by the Defense Advanced Research
Projects Agency (DARPA) under Contract No. HR0011-19-C-0106.
Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not neces-
sarily reflect the views of funders.

Testbed Evaluation of an Attestation-Capable, Programmable Software Switch

References

[1] 2022. The BMv2 Simple
https://github.com/p4lang/behavioral-model/blob/
d52ac6257bb3a58606383d03b31ed89671504791/docs/simple_switch.
md. Behavioral Model v2.

[2] 2023. Jupyter complex recipes from FABRIC. https://github.
com/fabric-testbed/jupyter-examples/blob/main/fabric_examples/
complex_recipes/p4_labs_bmv2/labl_creating_a_slice_with_a_P4_
switch.ipynb.

[3] PatBosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jen-
nifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, and David Walker. 2014. P4: Programming Protocol-
Independent Packet Processors. SSIGCOMM Comput. Commun. Rev. 44,
3 (jul 2014), 87-95. https://doi.org/10.1145/2656877.2656890

[4] Nik Sultana, Deborah Shands, and Vinod Yegneswaran. 2022. A Case
for Remote Attestation in Programmable Dataplanes. In Proceedings
of the 21st ACM Workshop on Hot Topics in Networks (Austin, Texas)
(HotNets °22). Association for Computing Machinery, New York, NY,
USA, 122-129. https://doi.org/10.1145/3563766.3564100

Switch target.

A Reproducibility

Following the instructions in the Call For Papers, we are in-
cluding an appendix on the reproducibility of this research.
The BMv2+RA source code can be retrieved from the on-
line repository? and the included README describes the
necessary dependencies to install and how to compile the
code. Once compiled, the included ra-to-base.sh script
can be modified and run to install the target over an existing
BMv2 installation. The script must be modified to include

the paths that an existing BMv2 install has placed its files in.
The script contains comments detailing its use.

Once installed, BMv2+RA replaces the normal BMv2 Sim-
ple Switch target, so any environments built to use that tar-
get like Hangar will function identically, using BMv2+RA in-
stead of Simple Switch. The sole exception is that BMv2+RA
assumes a modified vimodel architecture, found in the repos-
itory as vimodel.p4. By Default, ra-to-base.sh replaces the
base vimodel.p4 but some may choose to instead keep their

existing file and copy the modified file as a new name. Whichever

method is used, P4 files must be compiled using the modified
vimodel.p4 to run on BMv2+RA.

Once setup, aspects O-® are tested by initiating the switch
with a Thrift port and in a separate console accessing the
control plane by running sswitch_CLI. With the control
plane open, standard BMv2 commands can be used to write
to registers, modify tables, or swap programs, and the new
get_ra_data command will show how such changes alter
the switch’s RA checksums. Using packet capture, aspect @
and ® can be verified by passing IPv6 traffic, such as ICMPv6
echo requests, through the switch instance and noting the
correct addition of the RA header to the ICMPv6 packet

https://github.com/awolosewicz/bmv2-remote-attestation
structure. Finally, aspect ® is demonstrated in a similar man-

ner but with a P4 program that attempts to create an RA
header with false data.

https://github.com/p4lang/behavioral-model/blob/d52ac6257bb3a58606383d03b31ed89671504791/docs/simple_switch.md
https://github.com/p4lang/behavioral-model/blob/d52ac6257bb3a58606383d03b31ed89671504791/docs/simple_switch.md
https://github.com/p4lang/behavioral-model/blob/d52ac6257bb3a58606383d03b31ed89671504791/docs/simple_switch.md
https://github.com/fabric-testbed/jupyter-examples/blob/main/fabric_examples/complex_recipes/p4_labs_bmv2/lab1_creating_a_slice_with_a_P4_switch.ipynb
https://github.com/fabric-testbed/jupyter-examples/blob/main/fabric_examples/complex_recipes/p4_labs_bmv2/lab1_creating_a_slice_with_a_P4_switch.ipynb
https://github.com/fabric-testbed/jupyter-examples/blob/main/fabric_examples/complex_recipes/p4_labs_bmv2/lab1_creating_a_slice_with_a_P4_switch.ipynb
https://github.com/fabric-testbed/jupyter-examples/blob/main/fabric_examples/complex_recipes/p4_labs_bmv2/lab1_creating_a_slice_with_a_P4_switch.ipynb
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/3563766.3564100
https://github.com/awolosewicz/bmv2-remote-attestation

	Abstract
	1 Introduction
	2 Switch Architecture
	3 *-2mmPrototype Validation
	4 Local Testbed Setup and Evaluation
	4.1 Evaluation and Workloads

	5 FABRIC Testbed Setup and Evaluation
	5.1 Evaluation and Workloads

	References
	A Reproducibility

