
1

Machine Learning vs Deep Learning for Identifying
DDoS Traffic

Alexander Wolosewicz, Alec Burnworth, Ranjitha Aswath, Andrew Cook

Abstract—Internet traffic classification and attack recognition
is an active field of research. DDoS attacks are a growing
problem, and using AI could enable organizations to defend
themselves in a cost-effective and self-evolving manner. Our work
uses a newly-released DDoS attack dataset to compare the effec-
tiveness of Random Forest and Neural Network methodologies
in approaching the problem of DDoS attack detection. We find
that Neural Networks show greater potential for a final model;
however, the Random Forest is not without merit. We use our
Random Forest model to narrow the originally 315 features into
a much smaller feature space to train the Neural Network on,
and evaluate it against examples held out of the dataset. We find
that it is able to confidently class some attacks, but confidently
misclassifies others as benign.

I. INTRODUCTION

DDoS attacks are a growing problem worldwide, for both
public and private organizations. Cloudfare, a content delivery
network service used by nearly 19% of the internet, stated in
2024 that 6.8% of all internet traffic is malicious with 37.1%
of them being DDoS attacks [1]. Cybersecurity Ventures
predicts that the economic cost of DDoS attacks worldwide
will continue to grow, reaching $10.5 trillion by 2025 [2].

There are traditional difficulties when it comes to automat-
ically analyzing DDoS attacks. DDoS Attacks are constantly
evolving, and traditional methods struggle to classify traffic
fast enough and accurately enough to be effective [3]. AI
models could theoretically address these, being trained so that
they can classify traffic and respond to threats in real-time.
Further, they would be able to generalize to possibly identify
and address novel attacks in a way traditional methods cannot.

Historically, research into using AI to address DDoS and
other attacks has suffered due to a lack of modern datasets. In
a 2018 survey on the use of machine learning in networking
[4] it was found that the majority of current research used
the KDD’99 [5] dataset, which as its name suggests dates to
the year 1999. This predates many modern attack techniques,
the prevalence of end-to-end encryption, the vastly higher
bandwidth of benign traffic flows, and many other features of
the modern internet. To address this, the BCC-cPacket-Cloud-
DDoS-2024 dataset was published which incorporates modern
attacks and modern benign traffic patterns.

Our goal is to use this modern dataset to evaluate whether
the machine learning technique of Random Forest or deep
learning Neural Network techniques are better suited to this
classification problem. We classify in a binary fashion whether
a flow is an attack or benign, using just the Attack and Benign
labeled rows in the dataset.

For our work, we use a cleaned version of the dataset found
on Kaggle [6] as our base dataset due to issues obtaining the

original version on time for our work. This version cleans the
original dataset by filling NaN values as 0, dropping dupli-
cate rows, removing known contaminating features (flow ID,
timestamp, and IP addresses), dropping the protocol column
due to 0 variance, and some datatype and value cleanup. We
do some further modifications of our own, such as dropping
all rows labeled Suspicious (uncertain if Attack or Benign), as
well as some additional per-model pruning which is described
later.

This paper details our work training Random Forest and
Neural Network models on the dataset, evaluating them, then
building a synergistic regimen using Random Forest to reduce
the feature space the final models are trained on. The final
models are then evaluating, achieving excellent performance
at accurately identifying benign flows while being less accurate
at discerning certain attack flows.

II. IMPLEMENTATION

A. Random Forest

The scikit python library was used to generate the random
forest model.

In the first iteration of the random forest model, data pre-
processing involved removing rows where the packet duration
is zero or labeled as ’Suspicious’ to remove ambiguity in
the training phase. Input features with only one unique value
were removed as they provided no additional info helpful for
classification. A secondary output label titled ’activity’ was
also removed because our model is not intended to classify
different types of attack packets. Furthermore, all numeric
input features were normalized with z-score standardization so
all numeric values have the same variance, helping the model
train faster. The resulting dataset contained 199468 rows and
310 columns.

Due to interesting results from the initial random forest
model 2, we re-approached data cleaning and feature selection
for version two. This time, rows with a duration of zero
remained in the dataset, giving the model more inputs to work
with. Moreover, source and destination ports were left out
of normalization as they are not continuous numeric values.
The other numeric values were normalized with the min-max
normalization instead of z-score.

Extra steps were taken in version two to reduce the com-
plexity of the model due to concerns of over-fitting in version
one. First, a Pearson correlation matrix with all input features
was generated to identify which features had a high linear
relationship with each other. This allowed us to remove
redundant features that don’t provide any information that

2

Fig. 1. Cumulative importance of features in the original dataset, the red line denotes 95% of total importance reached

wasn’t already supplied by another feature. This reduced the
314 input features down to 83. Then, we ran a recursive feature
eliminator using a random forest model as its estimator. The
recursive feature eliminator was trained five times with 5-fold
validation in case any folds contain a disproportionate amount
of Benign or Attack packets. The compilation took nearly two
hours running on an M2 Macbook Pro laptop and returned six
features, ’src port’, ’dst port’, ’fwd init win bytes’, ’packet IAT
max’, ’fwd packets IAT max’, and ’bwd packets IAT max’.
The resulting shape of the clean dataset was 504701 rows and
7 columns.

B. Neural Network

Two libraries were used to construct our Neural Network
models - Tensorflow [7] and PyTorch [8]. We designed a
sequential model in Keras, a linear stack of layers where each
feeds into the next. The input layer comprised 128 neurons,
leveraging a ReLU (Rectified Linear Unit) activation function
to introduce non-linearity. The number of input features de-
fined the input shape. The architecture included two hidden
layers with 64 and 32 neurons, both using ReLU. The output
layer contained a single neuron with a Sigmoid activation
function to output probabilities for binary classification. The
model was compiled using the Adam optimizer, binary cross-
entropy loss, and accuracy as the evaluation metric.

The model was trained over 20 epochs with a batch size
of 32 and validated on the test set after each epoch. Initial
training runs achieved an accuracy of 0.9687 with a loss of
0.0844. Subsequent tuning improved the accuracy to 0.9731
with a slightly higher loss of 0.0871. Despite these results,

challenges such as long training times and occasional spikes
in loss/accuracy during epochs highlighted the need for further
refinements.

The initial PyTorch models were implemented as Sequential
models with repeating successive Linear layers with SeLU
activation functions, with hidden layer widths equal to the
size of the full dataset (314). Models evaluated had three, four,
and eight hidden layers, and we also evaluated doubling the
width of the hidden layers. These results are described more in
evaluation. The Linear layer was selected as a default option
[9] and SeLU was selected as the activation function due to
its general strength. The model was built to use the Adam
optimizer with binary cross-entropy loss. It was loaded onto
an NVIDIA RTX 4090 for training and evaluation. As our
task was a binary classification problem, the final layer used
a sigmoid activation function.

The final neural network model was done in Tensorflow,
since we found it significantly easier to work with while still
achieving good results. We used 10 hidden layers since we
found that greater depth led to better performance, and we
could afford to train to that depth by loading this model onto
the RTX 4090. The layers were Dense, with width equal to the
input size which was the feature-reduced dataset of size 50.
This model used SeLU activation functions for the same reason
as the PyTorch models, but also added BatchNormalization
and Dropout layers to improve generalization and reduce the
risk of overfitting. Again, the final layer used a sigmoid
activation function and the model used an Adam optimizer
with binary cross-entropy loss function.

3

III. EXPERIMENTAL EVALUATION

A. Random Forest

The first model used the gini information gain loss function
with balanced class weights. It was training on a simple 80-
20 train test split. A confusion matrix and ROC curve were
generated to measure the results. However, six variations of
the second model were trained to identify the best combination
of class weights and loss functions. Class weight variations
include balanced, 5 to 1 in favor of attack, and 10 to 1 in favor
of attack. Loss functions include entropy and gini information
gain. Cross-validation with 5 folds was done on a reshuffled
dataset to maintain relatively consistent class distribution and
prevent over-fitting. Each fold generated its own confusion
matrix as well as accuracy and AUC score. TPR and FPR rates
were calculated using the results from the confusion matrix.

B. Neural Network

For the PyTorch models, the dataset was split into 90%
training, 5% validation, 5% testing. All six variants were
evaluated using 5 split stratified KFolds and their average
accuracies compared. The models were evaluated not just for
final accuracy but for improvement in validation accuracy and
loss to identify the metrics to use for the final neural network
model.

The final model was first evaluated using an 80% training,
10% validation, 10% testing split on the feature-reduced
dataset. Additionally, source port and destination port were
dropped even though Random Forest ranked them as important
because we found it did not significantly alter accuracy, and
we believe it is better for generality not to rely on port
numbers. This model was evaluated for its final accuracy on
the test set as well as on 10 specific examples (5 benign,
5 attack) held out of the overall dataset. Additionally, its
misclassification rate for both attacks and benign traffic was
explored. Due to a noticeably high misclassification of attacks
yet with good overall accuracy, as shown in results, it was
trained again but with a random validation set consisting of
50% attacks and 50% benign flows. This was to force the
model to not compensate for poor attack classification by
correctly classifying the far more prevalent benign flows. This
was then also evaluated on the same metrics.

IV. RESULTS

A. Random Forest

For the first Random Forest model, we achieved an accuracy
score of 88% and an AUC of 0.85. The confusion matrix
shows that out of the 1571 misclassified packets, 1549 of them
were false negatives (Figure 2). This means the model has a
natural bias toward benign packets and is more likely to let
a malicious network packet through than stop a benign one.
However, cybersecurity agencies would much rather classify
benign packets as attacks than the alternative to play it safe.

The remaining Random Forest models performed much
better in comparison, although using a gini or entropy loss
function did not affect its scores in any significant way. With
balanced class weights, the average accuracy score was 97%

Fig. 2. Confusion matrix for the 1st Random Forest model

Fig. 3. Confusion matrix for the 2nd Random Forest model with an entropy
loss function and balanced class weights

Fig. 4. Confusion matrix for the 2nd Random Forest model with an entropy
loss function and Attack class weight of 5

4

Fig. 5. Confusion matrix for the 2nd Random Forest model with an entropy
loss function and Attack class weight of 10

Fig. 6. Confusion matrix for the 2nd Random Forest model with a gini loss
function and balanced class weights

Fig. 7. Confusion matrix for the 2nd Random Forest model with a gini loss
function and Attack class weight of 5

Fig. 8. Confusion matrix for the 2nd Random Forest model with a gini loss
function and Attack class weight of 10

and the average AUC was 0.96, a significant improvement
to the first model. However, similar to the first model, the
confusion matrices show a high percentage of misclassified
packets as false negatives (Figures 3 6). Class weights of 5 and
10 to the attack class were added to the model in an attempt to
reduce bias with some success, reducing the number of false
negatives by 30% while accuracy fell only 1% (Figures 4 5
7 8).

B. Neural Network

For the PyTorch models, we found that increasing depth led
to a slight decrease in average accuracy but a larger decrease in
standard deviation. Increasing the width had a similar pattern
but a far more noticeable decrease in accuracy. We thus opted
to use the narrow yet deep model architecture, since with
the reduced standard deviation the model was more likely
to perform well across the full dataset and generalize better.
Further, an analysis of accuracy (Figure 9 and loss per epoch
showed the narrow models performing better over time than
the wide ones, cementing our choice.

For the final model, the initial assessment showed a strong
accuracy of 96.3% on the test dataset. However, this masked
a significant misclassification of attack flows as benign. Since
the dataset after cleaning was heavily skewed benign, it could
compensate for this misclassification by correctly classifying
benign flows, and it was highly accurate in this regard 10. Of
the 10 held-out cases, it correctly identified the 5 benign flows,
confidently with the worst as 95% benign, yet only accurately
identified the 2 of the 5 attacks, with 2 classified as 100%
benign.

When forcing the model to use a 50-50 attack-benign vali-
dation set, even though it was smaller, it became significantly
more balanced in its misclassification when evaluated on a
50-50 test set 11 but took a significant accuracy hit, falling
to around 90%. It now correctly identified 4 of the 5 held-out
attacks with high confidence. This was done as further training
to the same trained model from before. It is possible that in

5

Fig. 9. Training and validation accuracy of the various PyTorch models per epoch

Fig. 10. Confusion matrix of the final Neural Network model applied to a
10% test sample of the cleaned dataset.

Fig. 11. Confusion matrix of the final Neural Network model applied to a
50-50 Attack-Benign test sample.

the future, training initially with a more equal dataset could
produce better results.

V. RELATED WORK

Intrusion detection and prevention are active and well-
established fields of research and industries. Intrusion De-
tection (IDS) and Intrusion Prevention Systems (IPS) are
available on the market which attempt to secure networks
against attacks. As described in I however, this is a constantly
evolving game. Traditional defenses must play catch-up to new
attacks, a weakness that has driven research into AI and ML
methods.

Many published methods rely upon the outdated KDD’99
dataset [10]–[12]. As described in [13] previous models also
have significant issues of computation infeasibility or false
detection rates. Their model BizSCOP represents the current
state-of-the-art, being trained on recent datasets such as CIC-
IDS-2017 [14]. It achieves a significant accuracy of 99.8%
with similarly impressive other metrics, alongside low com-
putational load.

However, the CIC-IDS-2017 dataset, as well as other recent
datasets designed to supplant KDD’99, have been found to
possess critical flaws [15] which brings into question the true
accuracy of the scores. However, the techniques to produce a
feasible model are still important, including combining models
synergistically.

Wei et. al [16] utilize federated learning techniques and eval-
uate their model on the same BCC-cPacket-Cloud-DDoS2024
dataset we use. Their technique also achieves appreciable
accuracy, but federated learning techniques may be a barrier
for smaller users in terms of feasibility and scale.

Ultimately, no other published work uses this new dataset.
Our work is not as accurate as related work, but still achieves
appreciable results for the relatively few resources used,
namely a single GPU.

VI. FUTURE WORK

More work remains to be done in the field of dataset
creation. We agree with others in the field [3], [4] that a key
factor holding the field back is a lack of high-quality datasets,
both labeled and unlabeled. When designing labeled sets, we

6

believe that authors should ensure that attacks are highly
represented. Further, when models are trained on these sets,
researchers should ensure that the models cannot compensate
for poor attack classification by correctly classifying benign
flows.

In terms of model design, future work can involve fur-
ther investigation into Neural Network hyper parameters and
architecture. We believe the neural network can improve
significantly given significantly more data, and using other
models such as Random Forest to prune the feature space
helps make this approach feasible.

Finally, we believe it is an open research question on the
best way to integrate these models into network architectures.
With the growth of Software-Defined Networking, we believe
an approach using a model that can take in network data and
output commands to an SDN controller to handle attacks in
real-time is viable, and should be explored.

VII. CONCLUSION

We have explored the potential of machine learning and
deep learning techniques for DDoS attack detection using
the BCC-cPacket-Cloud-DDoS-2024 dataset. By employing
Random Forest and Neural Network models, we found that
both approaches have strengths and limitations in handling the
complexities of modern internet traffic. The Random Forest
model excelled at feature selection, effectively narrowing the
dataset from 315 features to a concise subset that informed
the subsequent Neural Network training. Despite achieving
high accuracy and AUC scores, the Random Forest mod-
els exhibited a bias towards classifying traffic as benign,
a limitation in cybersecurity where false negatives (missed
attacks) are particularly costly. The Neural Network models
demonstrated greater potential for classification accuracy, es-
pecially when trained on the reduced feature set. However,
they initially struggled with misclassifying attack traffic due to
the imbalanced nature of the dataset. By introducing balanced
training and validation strategies, the model’s attack detection
improved significantly, at the expense of overall accuracy.
Overall, our results show that combining these methodolo-
gies—using Random Forest for feature reduction and Neural
Networks for classification—can offer a promising approach
to identifying a DDoS attack.

REFERENCES

[1] 2024. [Online]. Available: https://assets.ctfassets.net/slt3lc6tev37/
5naLIMtcpQ1QuuFNKFDyp9/7ba5f021de7118016ffd766ef0b2388d/
BDES-5907 State-of-App-Security-2024.pdf

[2] S. Morgan, “Cybercrime to cost the world $9.5 trillion usd annually
in 2024,” 2023. [Online]. Available: https://cybersecurityventures.com/
cybercrime-damage-costs-10-trillion-by-2025/

[3] M. Shafi, A. H. Lashkari, V. Rodriguez, and R. Nevo, “Toward
generating a new cloud-based distributed denial of service (ddos) dataset
and cloud intrusion traffic characterization,” Information, vol. 15, no. 4,
2024. [Online]. Available: https://www.mdpi.com/2078-2489/15/4/195

[4] R. Boutaba, M. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar,
F. Estrada-Solano, and M. Caicedo, “A comprehensive survey on ma-
chine learning for networking: Evolution, applications and research
opportunities,” Journal of Internet Services and Applications, vol. 9,
05 2018.

[5] L. ML, “Kdd cup 1999 data,” 1999. [Online]. Available: http:
//kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

[6] L. D’hooge, “Bccc-cpacket-cloud-ddos-2024,” 2024. [Online]. Avail-
able: https://www.kaggle.com/datasets/dhoogla/bccc-cpacket-cloud-
ddos-2024

[7] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[8] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style,
high-performance deep learning library,” 2019. [Online]. Available:
https://arxiv.org/abs/1912.01703

[9] A. Tam, “Building a binary classification model in pytorch,”
2023. [Online]. Available: https://machinelearningmastery.com/building-
a-binary-classification-model-in-pytorch/

[10] W. Wang, X. Du, D. Shan, R. Qin, and N. Wang, “Cloud intrusion
detection method based on stacked contractive auto-encoder and support
vector machine,” IEEE Transactions on Cloud Computing, vol. 10, no. 3,
pp. 1634–1646, 2022.

[11] A. Aldallal and F. Alisa, “Effective intrusion detection system to secure
data in cloud using machine learning,” Symmetry, vol. 13, no. 12, 2021.
[Online]. Available: https://www.mdpi.com/2073-8994/13/12/2306

[12] W. Elmasry, A. Akbulut, and A. H. Zaim, “A design of an integrated
cloud-based intrusion detection system with third party cloud service,”
Open Computer Science, vol. 11, no. 1, pp. 365–379, 2021. [Online].
Available: https://doi.org/10.1515/comp-2020-0214

[13] R. Menezes, P. Jayarin, and A. Sekar, “A bizarre synthesized cascaded
optimized predictor (bizscop) model for enhancing security in cloud
systems,” Journal of Cloud Computing, vol. 13, 05 2024.

[14] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating a
new intrusion detection dataset and intrusion traffic characterization,” in
International Conference on Information Systems Security and Privacy,
2018. [Online]. Available: https://api.semanticscholar.org/CorpusID:
4707749

[15] L. Liu, G. Engelen, T. Lynar, D. Essam, and W. Joosen, “Error
prevalence in nids datasets: A case study on cic-ids-2017 and cse-cic-
ids-2018,” in 2022 IEEE Conference on Communications and Network
Security (CNS), 2022, pp. 254–262.

[16] Z. Wei, J. Wang, Z. Zhao, and K. Shi, “Toward data efficient anomaly
detection in heterogeneous edge–cloud environments using clustered
federated learning,” Future Generation Computer Systems, vol. 164,
p. 107559, 2025. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0167739X24005235

